Propane Injection Math - An Exception to Like Terms?
Posted: Sat Oct 27, 2007 6:50 am
For a while, it has bugged me that propane injection math supposedly did not follow a very important rule in math and science: the units were not in like terms.
The simplest version of an equation for propane injection governing is simply a rearranged and slightly modified version of Boyle's Law, that is, P<sub>1</sub>V<sub>1</sub> = P<sub>2</sub>V<sub>2</sub>. In our context, rearranged, it would look like this:
<div align="center"></div>
Where P<sub>m</sub> is in the form of atmospheres, an absolute measurement of pressure. Since P<sub>2</sub> is equal to one atmosphere, the numerator of the fraction is simply 4.2% of the chamber volume.
For so long, it has grieved me supremely that this equation does not work for spudding purposes. For some reason, the popular, and correct, I might add, equation has put the left hand side of the equation in gauge terms. This means, that if you come up with 1 atmosphere as the answer, you would read that on a gauge, as 14.7 PSI. This is 2 atmospheres.
Thinking about it further, I think I've developed a hypothesis:
When injecting propane, the average spudder closes his injection valve right after opening it. This leaves one atmosphere of propane left inside of the meter. So, if you were to simple use the correct absolute answer from the equation above, and adjust it for gauge terms, (subtract an atmosphere), you would be short in propane volume proportional to the meter volume.
Rearranging Boyle's law again into the rearranged form and setting V<sub>2</sub> = V<sub>1</sub>, the terms cancel out leaving P<sub>2</sub> = P<sub>1</sub>.
<div align="center"></div>
So, to add another meter volume's worth of propane into the chamber to make up for this, we simply use the equation:
<div align="center"></div>
Where P<sub>m</sub> is in atmospheres. This equations yields the correct absolute pressure that the meter pipe needs to be at in order to obtain a correct fuel mixture.
But, since we spudders rarely use absolute pressure, we can simple use the first equation and say that P<sub>m</sub> is in gauge terms.
Thanks for listening to my hypothesis. While I'm here, I might as well say it now: this equation will have a percent error. This is because if you inject into a closed chamber, (which is what the value of 4.2% was chosen for, which is for injection into a closed system), the pressure will increase slightly, throwing off of equation by the slightest bit. This little error is not enough to bug me, and a few minutes of simple algebra could compensate for it, but by simply replacing 4.2% with 4.03%, and changing your system to an open one which displaces air as you inject propane, you can obtain the exact value you may be after.
Any comments or theories of your own are welcome, just make sure you at least prove what you're saying before yelling at me that I'm wrong.
The simplest version of an equation for propane injection governing is simply a rearranged and slightly modified version of Boyle's Law, that is, P<sub>1</sub>V<sub>1</sub> = P<sub>2</sub>V<sub>2</sub>. In our context, rearranged, it would look like this:
<div align="center"></div>
Where P<sub>m</sub> is in the form of atmospheres, an absolute measurement of pressure. Since P<sub>2</sub> is equal to one atmosphere, the numerator of the fraction is simply 4.2% of the chamber volume.
For so long, it has grieved me supremely that this equation does not work for spudding purposes. For some reason, the popular, and correct, I might add, equation has put the left hand side of the equation in gauge terms. This means, that if you come up with 1 atmosphere as the answer, you would read that on a gauge, as 14.7 PSI. This is 2 atmospheres.
Thinking about it further, I think I've developed a hypothesis:
When injecting propane, the average spudder closes his injection valve right after opening it. This leaves one atmosphere of propane left inside of the meter. So, if you were to simple use the correct absolute answer from the equation above, and adjust it for gauge terms, (subtract an atmosphere), you would be short in propane volume proportional to the meter volume.
Rearranging Boyle's law again into the rearranged form and setting V<sub>2</sub> = V<sub>1</sub>, the terms cancel out leaving P<sub>2</sub> = P<sub>1</sub>.
<div align="center"></div>
So, to add another meter volume's worth of propane into the chamber to make up for this, we simply use the equation:
<div align="center"></div>
Where P<sub>m</sub> is in atmospheres. This equations yields the correct absolute pressure that the meter pipe needs to be at in order to obtain a correct fuel mixture.
But, since we spudders rarely use absolute pressure, we can simple use the first equation and say that P<sub>m</sub> is in gauge terms.
Thanks for listening to my hypothesis. While I'm here, I might as well say it now: this equation will have a percent error. This is because if you inject into a closed chamber, (which is what the value of 4.2% was chosen for, which is for injection into a closed system), the pressure will increase slightly, throwing off of equation by the slightest bit. This little error is not enough to bug me, and a few minutes of simple algebra could compensate for it, but by simply replacing 4.2% with 4.03%, and changing your system to an open one which displaces air as you inject propane, you can obtain the exact value you may be after.
Any comments or theories of your own are welcome, just make sure you at least prove what you're saying before yelling at me that I'm wrong.